2022年黑龍江大學(xué)高等代數(shù)碩士研究生考研大綱及參考書目

發(fā)布時間:2021-10-12 編輯:考研派小莉 推薦訪問:
2022年黑龍江大學(xué)高等代數(shù)碩士研究生考研大綱及參考書目

2022年黑龍江大學(xué)高等代數(shù)碩士研究生考研大綱及參考書目內(nèi)容如下,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站,或下載我們的考研派APP和考研派微信公眾號(里面有非常多的免費考研資源可以領(lǐng)取,有各種考研問題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費答疑,助各位考研一臂之力,爭取早日考上理想中的研究生院校。)

2022年黑龍江大學(xué)高等代數(shù)碩士研究生考研大綱及參考書目 正文

考試科目名稱:高等代數(shù)    考試科目代碼:[820]
一、考試內(nèi)容及要求
一、行列式
1.內(nèi)容:行列式概念及性質(zhì),行列式按行(列)展開。
2.要求:
①理解數(shù)域的概念,掌握常見的數(shù)域和最小數(shù)域。
②理解n階行列式的定義,掌握行列式性質(zhì)。
③能用行列式定義、性質(zhì)(包括按行(列)展開的性質(zhì))遞推及歸納法等計算行列式。
二、矩陣
1.內(nèi)容:矩陣的概念,矩陣運算,逆矩陣和克萊姆法則,分塊矩陣,初等變換和初等陣,矩陣的等價分解,矩陣的秩,初等塊矩陣及等價分解的應(yīng)用。
2.要求:
①理解矩陣概念及相關(guān)運算法則,能熟練地進行矩陣的相關(guān)運算,掌握行列式乘法定理。
②理解逆矩陣的概念,掌握伴隨矩陣求逆方法,掌握矩陣可逆充要條件并用于判別,理解克萊姆法則并用于求解線性方程組。
③了解分塊矩陣的運算法則,準確用于計算。
④理解三種初等變換及相應(yīng)的初等陣,了解初等陣是可逆陣的乘法生成元。
⑤理解矩陣的等價分解,理解矩陣秩的定義,能用初等變換求矩陣秩及逆矩陣。
⑥能利用等價分解、分塊矩陣、初等矩陣及歸納法等解決一些矩陣分解,求秩相關(guān)的計算和證明問題。
三、n維向量與線性方程組
1.內(nèi)容:n維向量,向量的線性相關(guān)性,向量組的秩,消去法解線性方程組,線性方程組解的判定,線性方程組解的結(jié)構(gòu)。
2.要求:
①掌握n維向量線性表出,線性相關(guān),線性無關(guān)的概念,能進行判別及相關(guān)的證明。
②理解向量組的秩,矩陣的三秩相等定理,掌握向量組的秩以及極大無關(guān)組的概念,會求極大無關(guān)組以及向量組的秩。
③能用消去法解線性方程組,特別能對帶參數(shù)的方程組進行解的情況的討論。
④掌握齊次方程組基礎(chǔ)解系定理,一般線性方程組解的結(jié)構(gòu)定理,并能用于解決有關(guān)問題。
四、特征值與特征向量
1.內(nèi)容:特征值與特征向量,相似矩陣,Rn空間內(nèi)積,正交陣,實對稱陣的正交對角化。
2.要求:
①掌握特征值與特征向量的概念及求法。
②理解矩陣相似的概念,理解矩陣相似于對角陣的充要條件及充分條件,會進行相關(guān)的計算和證明。
③掌握施密特正交化方法并能用于將實對稱陣正交對角化。
④理解正交陣的概念及等價條件,利用實對稱陣正交對角化定理解決一些論證問題。
五、二次型
1.內(nèi)容:實二次型,正定二次型,半正定二次型,慣性定理,一般數(shù)域上的二次型。
2.要求:
①掌握一般二次型的概念,用矩陣和內(nèi)積分別表示二次型的方法。
②理解實二次型的慣性定理,掌握實數(shù)域及一般數(shù)域上二次型的標準形及其求法。
③理解正定二次型,半正定二次型的概念及若干等價條件并能用于相關(guān)計算與證明。
六、多項式
1.內(nèi)容:一元多項式,整除,最大公因式,因式分解定理,重因式,多項式函數(shù),復(fù)系數(shù)及實系數(shù)多項式因式分解,有理系數(shù)多項式。
2.要求:
①掌握數(shù)域上一元多項式的概念及相關(guān)運算(包括帶余除法)。
②理解多項式整除及最大公因式等概念,會用輾轉(zhuǎn)相除法求最大公因式。
③理解因式分解定理及其唯一性的含義,掌握有重因式的充要條件,并能用于判別。
④理解多項式恒等與多項式函數(shù)相等的關(guān)系,能利用恒等或判別恒等解決相關(guān)問題。
⑤掌握整系數(shù)多項式的有理根判別法以及關(guān)于不可約的Eisenstein判別法解決某些問題。
⑥了解復(fù)系數(shù)多項式的代數(shù)基本定理,理解實系數(shù)多項式的虛根成對定理,并能用于簡單證明。
七、線性空間
1.內(nèi)容:線性空間定義及簡單性質(zhì),維數(shù),基底與坐標,基變換與坐標變換,線性子空間,子空間的交與和,子空間的直和,線性空間的同構(gòu)。
2.要求:
①理解線性空間的公理化定義,掌握其簡單性質(zhì)。
②掌握線性空間維數(shù),基底,坐標等概念,掌握基變換及坐標變換公式進行有關(guān)計算。
③掌握線性子空間,交子空間,和子空間的概念及交與和的維數(shù)公式。
④理解子空間直和的概念,掌握直和的幾個充要條件并能用于相關(guān)證明和計算。
⑤理解線性空間的同構(gòu)概念,掌握有限維線性空間同構(gòu)的條件。
八、線性變換
1.內(nèi)容:線性變換及其運算,線性變換的矩陣,哈密頓-凱萊定理,線性變換的值域與核,不變子空間,若當標準形介紹,最小多項式,矩陣相似與λ-矩陣。
2.要求:
①掌握線性變換概念并能用于判別,理解線性變換的加法,數(shù)乘,乘法運算。
②掌握線性變換的矩陣表示及其求法,了解哈密頓-凱萊定理。
③理解線性變換的值域與核的概念,并了解其與線性方程組基礎(chǔ)解系定理之間關(guān)系。
④理解線性變換不變子空間的概念,掌握空間分解為不變子空間直和與矩陣相似于準對角陣之關(guān)系。
⑤了解復(fù)矩陣若當標準形的結(jié)構(gòu),能用λ-矩陣方法求一個復(fù)矩陣的若當標準形。
⑥了解最小多項式的概念,會求簡單陣的最小多項式。
⑦了解用λ-矩陣表述的矩陣相似的幾個充要條件。
九、歐氏空間
1.內(nèi)容:歐氏空間定義及其基本性質(zhì),標準正交基,同構(gòu),正交變換,子空間,對稱變換,最小二乘法,酉空間。
2.要求:
①掌握抽象歐氏空間的定義及其基本性質(zhì)。
②理解標準正交基及歐氏空間同構(gòu)的概念,會求一個歐氏空間的標準正交基。
③掌握有限維歐氏空間的正交變換的定義及其等價條件并能用于證明。
④理解歐氏空間子空間及其正交補的概念,會進行相關(guān)計算與證明。
⑤了解對稱變換及其矩陣表示,了解最小二乘法的思想。
⑥了解酉空間的概念及與歐氏空間相平行的結(jié)論。
二、試卷結(jié)構(gòu)
1.考試時間:180分鐘
2.試卷分值:150分
3.題型結(jié)構(gòu):
(1)多項選擇與填空(約占20-30分)
(2)計算題(約占50-60分)
(3)證明題(約占60-70分)
三、參考書目
1.曹重光, 線性代數(shù), 內(nèi)蒙古科學(xué)技術(shù)出版社, 1999.
2.北京大學(xué)數(shù)學(xué)系幾何與代數(shù)教研室前代數(shù)小組, 高等代數(shù)(第三版), 高等教育出版社, 2003.
黑龍江大學(xué)

添加黑龍江大學(xué)學(xué)姐微信,或微信搜索公眾號“考研派小站”,關(guān)注[考研派小站]微信公眾號,在考研派小站微信號輸入[黑龍江大學(xué)考研分數(shù)線、黑龍江大學(xué)報錄比、黑龍江大學(xué)考研群、黑龍江大學(xué)學(xué)姐微信、黑龍江大學(xué)考研真題、黑龍江大學(xué)專業(yè)目錄、黑龍江大學(xué)排名、黑龍江大學(xué)保研、黑龍江大學(xué)公眾號、黑龍江大學(xué)研究生招生)]即可在手機上查看相對應(yīng)黑龍江大學(xué)考研信息或資源

黑龍江大學(xué)考研公眾號 考研派小站公眾號

本文來源:http://m.zgxindalu.cn/hljdx/cksm_497520.html

推薦閱讀