2022年閩南師范大學(xué)高等代數(shù)碩士研究生考研大綱與參考書目

發(fā)布時間:2021-11-12 編輯:考研派小莉 推薦訪問:
2022年閩南師范大學(xué)高等代數(shù)碩士研究生考研大綱與參考書目

2022年閩南師范大學(xué)高等代數(shù)碩士研究生考研大綱與參考書目內(nèi)容如下,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站,或下載我們的考研派APP和考研派微信公眾號(里面有非常多的免費(fèi)考研資源可以領(lǐng)取,有各種考研問題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費(fèi)答疑,助各位考研一臂之力,爭取早日考上理想中的研究生院校。)

2022年閩南師范大學(xué)高等代數(shù)碩士研究生考研大綱與參考書目 正文

2022年碩士研究生入學(xué)初試自命題科目考試大綱
命題學(xué)院(蓋章):數(shù)學(xué)與統(tǒng)計(jì)學(xué)院      考試科目名稱:《高等代數(shù)》

科目說明:(考試用具要求)
一、考試基本要求
考試方法為筆試,考試時間為3個小時??疾鞂W(xué)生對《高等代數(shù)》的基本理論、基本方法和基本技能的掌握程度;考察學(xué)生抽象思維、邏輯推理和分析、解決問題的能力。
二、考試內(nèi)容和考試要求
(一)多項(xiàng)式
整除理論:括整除性、帶余除法、最大公因式、互素的概念與性質(zhì);因式分解理論:括不可約多項(xiàng)式、因式分解定理、重因式、實(shí)系數(shù)與復(fù)系數(shù)多項(xiàng)的因式分解,有理系數(shù)多項(xiàng)式不可約的判定;根的理論:括多項(xiàng)式函數(shù)、多項(xiàng)式的根、有理系數(shù)多項(xiàng)式的有理根求法。
(二)行列式
行列式的定義、性質(zhì);行列式的按行(列)展開定理,Laplace展開定理;行列式的計(jì)算方法;克萊姆法則。
(三)線性方程組
線性方程組的解法——消元法;數(shù)域P上n維向量空間Pn及向量的線性相關(guān)性;線性方程組有解的判別定理;線性方程組解的結(jié)構(gòu)及齊次線性方程組的解空間的討論。
(四)矩陣
矩陣的運(yùn)算;初等變換與初等矩陣;可逆矩陣;分塊矩陣;矩陣的秩;矩陣的等價(即相抵)、合同、相似、正交相似;矩陣的可對角化問題。
(五)二次型
二次型的標(biāo)準(zhǔn)形與合同變換;復(fù)數(shù)域與實(shí)數(shù)域上二次型的標(biāo)準(zhǔn)形、規(guī)范形;正定二次型、半正定二次型及相應(yīng)的矩陣類型。
(六)線性空間
線性空間的概念;基、維數(shù)與坐標(biāo);基變換與坐標(biāo)變換;子空間、子空間的交與和、維數(shù)公式、子空間的直和;線性空間的同構(gòu)。
(七)線性變換 
線性映射與線性變換的概念、運(yùn)算;線性變換的矩陣表示;線性變換(矩陣)的特征多項(xiàng)式、特征值與特征向量;線性變換的值域與核;不變子空間;最小多項(xiàng)式。
(八)λ-矩陣
λ-矩陣在初等變換下的標(biāo)準(zhǔn)形;不變因子、矩陣相似的條件;初等因子、Jordan標(biāo)準(zhǔn)形。
(九)歐氏空間
向量內(nèi)積;正交基(組)、標(biāo)準(zhǔn)正交基(組)、度量矩陣;正交變換與正交矩陣;子空間的正交關(guān)系、正交補(bǔ);對稱變換與實(shí)對稱矩陣。
三、考試基本題型和分值
選擇題20分,填空題20分,解答題110分
四、參考書目
北京大學(xué)數(shù)學(xué)系幾何與代數(shù)教研究前代數(shù)小組編,王萼芳、石生明修訂《高等代數(shù)》(第五版),2019,高等教育出版社。





閩南師范大學(xué)

添加閩南師范大學(xué)學(xué)姐微信,或微信搜索公眾號“考研派小站”,關(guān)注[考研派小站]微信公眾號,在考研派小站微信號輸入[閩南師范大學(xué)考研分?jǐn)?shù)線、閩南師范大學(xué)報(bào)錄比、閩南師范大學(xué)考研群、閩南師范大學(xué)學(xué)姐微信、閩南師范大學(xué)考研真題、閩南師范大學(xué)專業(yè)目錄、閩南師范大學(xué)排名、閩南師范大學(xué)保研、閩南師范大學(xué)公眾號、閩南師范大學(xué)研究生招生)]即可在手機(jī)上查看相對應(yīng)閩南師范大學(xué)考研信息或資源。

閩南師范大學(xué)考研公眾號 考研派小站公眾號

本文來源:http://m.zgxindalu.cn/mnsfdx/cksm_517109.html

推薦閱讀