2022西安電子科技大學(xué)數(shù)學(xué)分析碩士研究生考研大綱

發(fā)布時間:2021-09-14 編輯:考研派小莉 推薦訪問:
2022西安電子科技大學(xué)數(shù)學(xué)分析碩士研究生考研大綱

2022西安電子科技大學(xué)數(shù)學(xué)分析碩士研究生考研大綱內(nèi)容如下,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站,或下載我們的考研派APP和考研派微信公眾號(里面有非常多的免費考研資源可以領(lǐng)取,有各種考研問題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費答疑,助各位考研一臂之力,爭取早日考上理想中的研究生院校。)

2022西安電子科技大學(xué)數(shù)學(xué)分析碩士研究生考研大綱 正文

601 數(shù)學(xué)分析 考試大綱
一、考試總體要求與考試要點
1.考試對象
考試對象為具有全國碩士研究生入學(xué)考試資格并報考西安電子科技大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院碩士研究生的考生。
2.考試總體要求
測試考生對數(shù)學(xué)分析的基本內(nèi)容的理解、掌握和熟練程度。要求考生熟悉數(shù)學(xué)分析的基本理論、掌握數(shù)學(xué)分析的基本方法,具有較強的抽象思維能力、邏輯推理能力和運算能力。
3.考試內(nèi)容和要點
(一)實數(shù)集與函數(shù)
1、實數(shù):實數(shù)的概念;實數(shù)的性質(zhì);絕對值不等式。
2、函數(shù):函數(shù)的概念;函數(shù)的定義域和值域;復(fù)合函數(shù);反函數(shù)。
3、函數(shù)的幾何特性:單調(diào)性;奇偶性;周期性。
要求:理解和掌握絕對值不等式的性質(zhì),會求解絕對值不等式;掌握函數(shù)的概念和表示方法,會求函數(shù)的定義域和值域,會證明具體函數(shù)的幾何特性。
(二)數(shù)列極限
1、數(shù)列極限的概念( 定義)。
2、數(shù)列極限的性質(zhì):唯一性;有界性;保號性。
3、數(shù)列極限存在的條件:單調(diào)有界準(zhǔn)則;兩邊夾法則。
要求:理解和掌握數(shù)列極限的概念,會使用 語言證明數(shù)列的極限;掌握數(shù)列極限的基本性質(zhì)、運算法則以及數(shù)列極限的存在條件(單調(diào)有界原理和兩邊夾法則),并能運用它們求數(shù)列極限;了解無窮小量和無窮大量的概念性質(zhì)和運算法則,會比較無窮小量與無窮大量的階。
(三)函數(shù)極限
1、函數(shù)極限的概念( 定義、 定義);單側(cè)極限的概念。
2、函數(shù)極限的性質(zhì):唯一性;局部有界性;局部保號性。
3、函數(shù)極限存在的條件:海涅歸結(jié)原則。
4、兩個重要極限。
要求:理解和掌握函數(shù)極限的概念,會使用 語言以及 語言證明函數(shù)的極限;掌握函數(shù)極
限的基本性質(zhì)、運算法則,會使用海涅歸結(jié)原理證明函數(shù)極限不存在;掌握兩個重要極限并能利用它們來求極限;了解單側(cè)極限的概念以及求法。
(四)函數(shù)連續(xù)
1、函數(shù)連續(xù)的概念:一點連續(xù)的定義;區(qū)間連續(xù)的定義;單側(cè)連續(xù)的定義;間斷點的分
類。
2、連續(xù)函數(shù)的性質(zhì):局部性質(zhì)及運算;閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最值性、有界性、介
值性、一致連續(xù)性);復(fù)合函數(shù)的連續(xù)性;反函數(shù)的連續(xù)性。
3、初等函數(shù)的連續(xù)性。
要求:理解與掌握函數(shù)連續(xù)性、一致連續(xù)性的定義以及它們的區(qū)別和聯(lián)系,會證明具體函數(shù)的連續(xù)以及一致連續(xù)性;理解與掌握函數(shù)間斷點的分類;能正確敘述并簡單應(yīng)用閉區(qū)間上連續(xù)函數(shù)的性質(zhì);了解反函數(shù)、復(fù)合函數(shù)以及初等函數(shù)的連續(xù)性。
(五)實數(shù)系六大基本定理及應(yīng)用
1、實數(shù)系六大基本定理:確界存在定理;單調(diào)有界定理;閉區(qū)間套定理;致密性定理; 柯西收斂準(zhǔn)則;有限覆蓋定理。
2、閉區(qū)間上連續(xù)函數(shù)性質(zhì)的證明:有界性定理的證明;最值性定理的證明;介值性定理的證明;一致連續(xù)性定理的證明。
要求:理解和掌握上、下確界的定義,會求具體數(shù)集的上、下確界;理解和掌握閉區(qū)間上連續(xù)函數(shù)性質(zhì)及其證明;能正確敘述實數(shù)系六大基本定理的內(nèi)容及其證明思想,會使用開覆蓋以及二分法構(gòu)造區(qū)間套進行簡單證明。
(六)導(dǎo)數(shù)與微分
1、導(dǎo)數(shù)概念:導(dǎo)數(shù)的定義;單側(cè)導(dǎo)數(shù);導(dǎo)數(shù)的幾何意義。
2、求導(dǎo)法則:初等函數(shù)的求導(dǎo);反函數(shù)的求導(dǎo);復(fù)合函數(shù)的求導(dǎo);隱函數(shù)的求導(dǎo);參數(shù)方程的求導(dǎo);導(dǎo)數(shù)的運算(四則運算)。
3、微分:微分的定義;微分的運算法則;微分的應(yīng)用。
4、高階導(dǎo)數(shù)與高階微分。
要求:能熟練地運用導(dǎo)數(shù)的運算性質(zhì)和求導(dǎo)法則求具體函數(shù)的(高階)導(dǎo)數(shù)和微分;理解和掌握可導(dǎo)與可微、可導(dǎo)與連續(xù)的概念及其相互關(guān)系;掌握左、右導(dǎo)數(shù)的概念以及分段函數(shù)求導(dǎo)方法,了解導(dǎo)函數(shù)的介值定理。
(七)微分學(xué)基本定理
1、中值定理:羅爾中值定理;拉格朗日中值定理;柯西中值定理。
2、泰勒公式。
要求:理解和掌握中值定理的內(nèi)容、證明及其應(yīng)用;了解泰勒公式及在近似計算中的應(yīng)用, 能夠把某些函數(shù)按泰勒公式展開
(八)導(dǎo)數(shù)的應(yīng)用
1、函數(shù)的單調(diào)性與極值。
2、函數(shù)凹凸性與拐點。
3、幾種特殊類型的未定式極限與洛必達法則。
要求:理解和掌握函數(shù)的單調(diào)性和凹凸性,會使用這些性質(zhì)求函數(shù)的極值點以及拐點;能根據(jù)函數(shù)的單調(diào)性、凹凸性、拐點、漸近線等進行作圖;能熟練地運用洛必達法則求未定式的極限。
(九)不定積分
1、不定積分概念。
2、換元積分法與分部積分法。
3、有理函數(shù)的積分。
要求:理解和掌握原函數(shù)和不定積分概念以及它們的關(guān)系;熟記不定積分基本公式,掌握換元積分法、分部積分法,會求初等函數(shù)、有理函數(shù)、三角函數(shù)的不定積分。
(十)定積分
1、定積分的概念;定積分的幾何意義。
2、定積分存在的條件:可積的必要條件和充要條件;達布上和與達布下和;可積函數(shù)類(連續(xù)函數(shù),只有有限個間斷點的有界函數(shù),單調(diào)函數(shù))。
3、定積分的性質(zhì):四則運算;絕對值性質(zhì);區(qū)間可加性;不等式性質(zhì);積分中值定理。
4、定積分的計算:變上限積分函數(shù);牛頓-萊布尼茲公式;換元公式;分部積分公式。要求:理解和掌握定積分概念、可積的條件以及可積函數(shù)類;熟練掌握和運用牛頓-萊布
尼茲公式,換元積分法,分部積分法求定積分。
(十一)定積分的應(yīng)用
1、定積分的幾何應(yīng)用:微元法;求平面圖形的面積;求平面曲線的弧長;求已知截面面積的立體或者旋轉(zhuǎn)體的體積;求旋轉(zhuǎn)曲面的面積。
2、定積分的物理應(yīng)用:求質(zhì)心;求功;求液體壓力。
要求:理解和掌握"微元法";掌握定積分的幾何應(yīng)用;了解定積分的物理應(yīng)用。
(十二)數(shù)項級數(shù)
1、預(yù)備知識:上、下極限;無窮級數(shù)收斂、發(fā)散的概念;收斂級數(shù)的基本性質(zhì);柯西收斂原理。
2、正項級數(shù):比較判別法;達朗貝爾判別法;柯西判別法;積分判別法。
3、任意項級數(shù):絕對收斂與條件收斂的概念及其性質(zhì);交錯級數(shù)與萊布尼茲判別法;阿貝爾判別法與狄利克雷判別法。
要求:理解和掌握正項級數(shù)的收斂判別法以及交錯級數(shù)的萊布尼茲判別法;掌握一般項級數(shù)的阿貝爾判別法與狄利克雷判別法;了解上、下極限的概念和性質(zhì)以及絕對收斂和條件收斂的概念和性質(zhì)。
(十三)反常積分
1、無窮限的反常積分:無窮限的反常積分的概念;無窮限的反常積分的斂散性判別法。
2、無界函數(shù)的反常積分:無界函數(shù)的反常積分的概念;無界函數(shù)的反常積分的斂散性判別法。
要求:理解和掌握反常積分的收斂、發(fā)散、絕對收斂、條件收斂的概念;掌握反常積分的柯西收斂準(zhǔn)則,會判斷某些反常積分的斂散性。
(十四)函數(shù)項級數(shù)
1、一致收斂的概念。
2、一致收斂的性質(zhì):連續(xù)性定理;可積性定理;可導(dǎo)性定理。
3、一致收斂的判別法;M-判別法;阿貝爾判別法;狄利克雷判別法。
要求:理解和掌握一致收斂的概念、性質(zhì)及其證明;能夠熟練地運用 M-判別法判斷一些函數(shù)項級數(shù)的一致收斂性。
(十五)冪級數(shù)
1、冪級數(shù)的概念以及冪級數(shù)的收斂半徑、收斂區(qū)間、收斂域。
2、冪級數(shù)的性質(zhì)。
3、函數(shù)展開成冪級數(shù)。
要求:理解和掌握冪級數(shù)的概念,會求冪級數(shù)的和函數(shù)以及它的收斂半徑、收斂區(qū)間、收斂域;掌握冪級數(shù)的性質(zhì)以及兩種將函數(shù)展開成冪級數(shù)的方法,會把一些函數(shù)直接或者間接展開成冪級數(shù)。
(十六)傅里葉級數(shù)
1、傅里葉級數(shù):三角函數(shù)系的正交性;傅里葉系數(shù)。
2、以 為周期的函數(shù)的傅里葉級數(shù)。
3、以 2L 為周期的傅里葉級數(shù)。
4、收斂定理的證明。
5、傅里葉變換。
要求:理解和掌握三角函數(shù)系的正交性與傅里葉級數(shù)的概念;掌握傅里葉級數(shù)收斂性判別法;能將一些函數(shù)展開成傅里葉級數(shù);了解收斂定理的證明以及傅里葉變換的概念和性質(zhì)。
(十七)多元函數(shù)極限與連續(xù)
1、平面點集與多元函數(shù)的概念。
2、二元函數(shù)的二重極限、二次極限。
3、二元函數(shù)的連續(xù)性。
要求:理解和掌握二元函數(shù)的二重極限、二次極限的概念以及它們之間的關(guān)系,會計算一些簡單的二元函數(shù)的二重極限和二次極限;掌握平面點集、聚點的概念;了解平面點集的幾個基本定理以及閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì)。
(十八)多元函數(shù)的微分學(xué)
1、偏導(dǎo)數(shù)與全微分:偏導(dǎo)數(shù)與全微分的概念;可微與可偏導(dǎo)、可微與連續(xù)、可偏導(dǎo)與連續(xù)的關(guān)系。
2、復(fù)合函數(shù)求偏導(dǎo)數(shù)以及隱函數(shù)求偏導(dǎo)數(shù)。
3、空間曲線的切線與法平面以及空間曲面的切平面和法線。
4、方向?qū)?shù)與梯度。
5、多元函數(shù)的泰勒公式。
6、極值和條件極值
要求:理解和掌握偏導(dǎo)數(shù)、全微分、方向?qū)?shù)、梯度的概念及其計算;掌握多元函數(shù)可微、可偏導(dǎo)和連續(xù)之間的關(guān)系;會求空間曲線的切線與法平面以及空間曲面的切平面和法線;會求函數(shù)的極值、最值;了解多元泰勒公式。
(十九)隱函數(shù)存在定理、函數(shù)相關(guān)
1、隱函數(shù):隱函數(shù)存在定理;反函數(shù)存在定理;雅克比行列式。
2、函數(shù)相關(guān)。
要求:了解隱函數(shù)的概念及隱函數(shù)存在定理,會求隱函數(shù)的導(dǎo)數(shù);了解函數(shù)行列式的性質(zhì)以及函數(shù)相關(guān)。
(二十)含參變量積分以及反常積分
1、含參變量積分:積分與極限交換次序;積分與求導(dǎo)交換次序;兩個個積分號交換次序。
2、含參變量反常積分:含參變量反常積分的一致收斂性;一致收斂的判別法;歐拉積分、函數(shù)、 函數(shù)。
要求:理解和掌握積分號下求導(dǎo)數(shù)的方法;掌握 函數(shù)、 函數(shù)的性質(zhì)及其相互關(guān)系;了解含參變量反常積分的一致收斂性以及一致收斂的判別法。
(二十一)重積分
1、重積分概念:重積分的概念;重積分的性質(zhì)。
2、二重積分的計算:用直角坐標(biāo)計算二重積分;用極坐標(biāo)計算二重積分;用一般變換計算二重積分。
3、三重積分計算:用直角坐標(biāo)計算三重積分;用柱面坐標(biāo)計算三重積分;用球面坐標(biāo)計算三重積分。
4、重積分應(yīng)用:求物體的質(zhì)心、轉(zhuǎn)動慣量;求立體體積,曲面的面積;求引力。
要求:理解和掌握二重、三重積分的各種積分方法和特點,會選擇最合適的方法進行積分; 掌握并合理運用重積分的對稱性簡化計算;了解柱面坐標(biāo)和球面坐標(biāo)積分元素的推導(dǎo)。
(二十二)曲線積分與曲面積分
1、第一類曲線積分:第一類曲線積分的概念、性質(zhì)與計算;第一類曲線積分的對稱性。
2、第二類曲線積分:第二類曲線積分的概念、性質(zhì)與計算;兩類曲線積分的聯(lián)系。
3、第一類曲面積分:第一類曲面積分的概念、性質(zhì)與計算;第一類曲面積分的對稱性。
4、第二類曲面積分:曲面的側(cè);第二類曲面積分的概念、性質(zhì)與計算;兩類曲面積分的聯(lián)系。
5、格林公式:曲線積分與路徑的無關(guān)的四種等價敘述。
6、高斯公式。
7、斯托克斯公式。
8、場論初步:梯度;散度;旋度。
要求:理解和掌握兩類曲線積分與曲面積分的概念、性質(zhì)與計算,會使用對稱性簡化第一類曲線以及曲面積分;熟練掌握格林公式、高斯公式的證明并能利用它們求一些曲線積分和曲
面積分;了解兩類曲線積分及曲面積分的區(qū)別和聯(lián)系;了解斯托克斯公式和場論初步。
二、考試形式
1. 考試時間:180 分鐘。2.試卷分值:150 分。3.考試方式:閉卷考試。
 
西安電子科技大學(xué)

添加西安電子科技大學(xué)學(xué)姐微信,或微信搜索公眾號“考研派小站”,關(guān)注[考研派小站]微信公眾號,在考研派小站微信號輸入[西安電子科技大學(xué)考研分數(shù)線、西安電子科技大學(xué)報錄比、西安電子科技大學(xué)考研群、西安電子科技大學(xué)學(xué)姐微信、西安電子科技大學(xué)考研真題、西安電子科技大學(xué)專業(yè)目錄、西安電子科技大學(xué)排名、西安電子科技大學(xué)保研、西安電子科技大學(xué)公眾號、西安電子科技大學(xué)研究生招生)]即可在手機上查看相對應(yīng)西安電子科技大學(xué)考研信息或資源。

西安電子科技大學(xué)考研公眾號 考研派小站公眾號

本文來源:http://m.zgxindalu.cn/xiandianzikeji/cankaoshumu_466266.html

推薦閱讀