浙江理工大學(xué)理學(xué)院導(dǎo)師:傅景禮

發(fā)布時(shí)間:2021-11-05 編輯:考研派小莉 推薦訪問:
浙江理工大學(xué)理學(xué)院導(dǎo)師:傅景禮

浙江理工大學(xué)理學(xué)院導(dǎo)師:傅景禮內(nèi)容如下,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站,或下載我們的考研派APP和考研派微信公眾號(hào)(里面有非常多的免費(fèi)考研資源可以領(lǐng)取,有各種考研問題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費(fèi)答疑,助各位考研一臂之力,爭取早日考上理想中的研究生院校。)

浙江理工大學(xué)理學(xué)院導(dǎo)師:傅景禮 正文


  姓名:傅景禮 
  性別:男 
  職稱:教授 
  所在學(xué)院:理學(xué)院 

  個(gè)人簡介:
  傅景禮,博士、浙江理工大學(xué)教授、博士生導(dǎo)師。
  1987年晉升講師,1995年晉升副教授,2002年破格晉升教授。2001.8-2004.6上海大學(xué)上海應(yīng)用數(shù)學(xué)和力學(xué)研究所一般力學(xué)與力學(xué)基礎(chǔ)專業(yè)獲工學(xué)博士學(xué)位;2003年在青島大學(xué)獲碩士生導(dǎo)師資格;2008年在湘潭大學(xué)獲應(yīng)用數(shù)學(xué)博士生導(dǎo)師資格;2009年在浙江理工大學(xué)獲機(jī)械設(shè)計(jì)與理論博士生導(dǎo)師資格。2004年調(diào)入浙江理工大學(xué),任數(shù)學(xué)物理研究所所長。
  主持國家自然科學(xué)基金二項(xiàng);主持完成省自然科學(xué)基金4項(xiàng);獲浙江省科學(xué)技術(shù)獎(jiǎng)二等獎(jiǎng)(第一名),獲教育部自然科學(xué)獎(jiǎng)二等獎(jiǎng)(第二名), 獲上海市科技進(jìn)步二等獎(jiǎng)(第二名),獲河南省科技進(jìn)步三等獎(jiǎng)一項(xiàng)(第二名);獲省級教學(xué)成果一等獎(jiǎng)一項(xiàng)(第一名);發(fā)表研究論文百余篇,經(jīng)檢索被SCI收錄論文近70篇,被EI收錄論文50余篇,被SCI期刊他人引用論文600余次,已培養(yǎng)博士生1名,碩士生3名,在研博士生1名,在研碩士生7名。

  學(xué)術(shù)兼職
  湘潭大學(xué)兼職教授;湘潭大學(xué)博士生導(dǎo)師;青島大學(xué)碩士生導(dǎo)師。
  Physics Letters A, Modern Physics Letters B, International Journal of Theorem Physics, Acta Mechanica Sinica, Chinese Physics, Chinese Physics Letters, 物理學(xué)報(bào)、數(shù)學(xué)物理學(xué)報(bào)審稿專家。

  主講課程
  《數(shù)學(xué)物理方法》、《分析力學(xué)》、《機(jī)電分析力學(xué)》、《Symmetries and Differential Equations》,《Symmetry and Integration Methods》、《李群李代數(shù)對約束力學(xué)系統(tǒng)的應(yīng)用》、《理論力學(xué)》、《熱力學(xué)與統(tǒng)計(jì)物理》、《光學(xué)》和《電工學(xué)》等。
  
  主要研究方向:方向1:分析力學(xué);方向2:力學(xué)、物理學(xué)中的現(xiàn)代數(shù)學(xué)方法;方向3:機(jī)電耦合動(dòng)力系統(tǒng)的Lie群分析;方向4:相對論性Birkhoff系統(tǒng)動(dòng)力學(xué);方向5:分?jǐn)?shù)階動(dòng)力學(xué)系統(tǒng)Lie群分析。

  獲獎(jiǎng)
  1.浙江省科學(xué)技術(shù)獎(jiǎng)二等獎(jiǎng),機(jī)電動(dòng)力系統(tǒng)的對稱性與積分方法研究,2010年,第一名;
  2.教育部自然科學(xué)獎(jiǎng)二等獎(jiǎng),有限和無限自由度系統(tǒng)的對稱性和守恒量, 2010年,第二名;
  3.上海市科技進(jìn)步二等獎(jiǎng),力學(xué)系統(tǒng)的對稱性和守恒量,2005年,第二名;
  4.河南省科技進(jìn)步獎(jiǎng)三等獎(jiǎng),機(jī)電耦合動(dòng)力系統(tǒng)的對稱性、穩(wěn)定性及其應(yīng)用。,2008年,第二名,
  5.河南省教學(xué)成果一等獎(jiǎng),旋轉(zhuǎn)二次曲面成像在物理教學(xué)中的應(yīng)用研究,2005年,第一名,

  科研項(xiàng)目
  1.國家自然科學(xué)基金項(xiàng)目(11072218),離散約束力學(xué)系統(tǒng)的對稱性和守恒量研究(2011.1-2013.12),資助39萬元,主持人;
  2.國家自然科學(xué)基金項(xiàng)目(10672143),離散機(jī)電動(dòng)系統(tǒng)的對稱性和保結(jié)構(gòu)算法(2007.01~2009.12),資助34萬,主持人
  3.河南省自然科學(xué)基金項(xiàng)目(0511022200),機(jī)電動(dòng)力系統(tǒng)的對稱性和數(shù)值計(jì)算方法(2005.1-2007.12),排名 1
  4.河南省自然科學(xué)基金項(xiàng)目(0311011400),機(jī)電動(dòng)力系統(tǒng)的現(xiàn)代數(shù)學(xué)方法(2003.1-2005.12),排名1
  5.河南省自然科學(xué)基金項(xiàng)目(984053100),相對論Birkhoff系統(tǒng)動(dòng)力學(xué)研究(1998.1-2001.12), 排名1
  6.浙江省自然科學(xué)基金項(xiàng)目(Y6100337),第二類Mei對稱性下動(dòng)力學(xué)系統(tǒng)共形不變性與守恒量的研究(20111.1-2012.12),資助10萬元,第2名
  7.河南省自然科學(xué)基金項(xiàng)目(0211011800),約束力學(xué)系統(tǒng)的精確不變量和絕熱不變量(2002.1-2003.12),排名2
  8.河南省自然科學(xué)基金項(xiàng)目(072300440220),機(jī)電耦合動(dòng)力系統(tǒng)的對稱性、穩(wěn)定性及其應(yīng)用(2007.1-2008.12), 排名2
  9.河南省自然科學(xué)基金項(xiàng)目(998040080),Birkhoff系統(tǒng)的全局分析分岔與混沌(1999.1-2000.6),排名3
  10.河南省自然科學(xué)基金項(xiàng)目,約束力學(xué)系統(tǒng)的對稱性和全局分析,排名2
  11.中國科學(xué)院科學(xué)與工程計(jì)算國家重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目,機(jī)電系統(tǒng)的辛算法和對稱性分析(2005.1-2005.12),獨(dú)立完成
  12.中國科學(xué)院科學(xué)與工程計(jì)算國家重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目,機(jī)電系統(tǒng)的對稱性和保結(jié)構(gòu)算法(2006.1-2006.12),獨(dú)立完成
  13.中國科學(xué)院科學(xué)與工程計(jì)算國家重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目,離散機(jī)電動(dòng)力系統(tǒng)的非Noether對稱性和守恒量(2007.1-2007.12),獨(dú)立完成

  發(fā)表主要論文
  1.Fu Jing-Li, Chen Ben-Yong, Fu Hao, Zhao Gang-Ling, Liu RongWan, and Zhu.Zhi-Yan1, Velocity-dependent symmetries and non-Noether conserved quantities of electromechanical systems, Science China: Physics, Mechanics & Astronomy, 2011,54 ,(2): 288–295
  2.Fu JingLi, Li XiaoWei, Li ChaoRong, Zhao WeiJia& Chen BenYong, Symmetries and exact solutions of discrete nonconservative systems, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1699–17063.
  3.Fu Jing-Li, Chen, Li-Qun ,Chen Ben-Yong.Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1687–1698
  4.Fu Jing-Li,Chen Li-Qun and Chen Ben-Yong, Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices, Science China, Physics.Mechanics & Astronomy, 2010, 53(3): 545-554
  5.傅景禮,陳立群,陳本永,非規(guī)范格子離散機(jī)電耦合動(dòng)力系統(tǒng)的Noether理論,中國科學(xué)G輯,2010,40(2):133-145
  6.傅景禮,陳立群,陳本永,非規(guī)范格子離散非保守系統(tǒng)的Noether理論,中國科學(xué)G輯,2009,39(9):1320-13293.
  7.Fu Jing-Li, Fu Hao and Liu Rong-Wan, Hojman conserved quantities of discrete mechanico- electrical systems constructed by continuous symmetries, Physics Letters A, 2010, 374:1812-1818
  8.Fu Jing-Li ,Fu Hao , Su Ning-Fen and Bai Guo-Liang, Damped Properties and Noether Symmetries of Damped Free Vibration, Pract.Periodical on Struct.Des.a(chǎn)nd Constr.2010, 15(1): 50-53
  9.Zhao Li, Fu Jing-Li and Chen Ben-Yong, Lie symmetries and conserved quantities for atwo-dimentional nonlinear diffusion equation of concentration, Chinese Physics B, 2010, 19(1):010301-010301-5
  10.Fu Jing-Li,Chen Ben-Yong and Chen Li-Qun, Noether symmetries of discrete nonholono-mic dynamical systems, Physics Letters A, 2009.373:409-412
  11.Fu Jing-Li and Chen Ben-Yong, Hojman conserved quantities and Lie symmetries of non-conservative systems, Modern Physics Letters B,2009,23(10):1315-1322
  12.Fu Jing-Li,Nie Ning-Ming,Huang Jian-Fei,Jimé nez Salvador,Tang Yi-Fa,Vá zquez Luis and Zhao Wei-Jia, Noether conserved quantities and Lie point symmetries of difference Lagrange--Maxwell equations and lattices, Chinese Physics B, 2009 18(7):2634-2641
  13.Li Ziyan and Fu Jingli(通訊作者), Euler–Lagrange equation from nonlocal-in-time kinetic energyof nonconservative system, Physics Letters A, 2009,374:106-109
  14.Fu Jing-Li, Salnalor Jiménez and Tang Yi-Fa and Luis Vázquez, Construction of exact invariants of time-dependent linear nonholonomic dynamical systems, Physics Letters A, 2008,372: 1555-1561
  15.Wang Xian-Jun and Fu Jing-Li(通訊作者), Energy-work connection integration scheme for nonholonomic Hamiltonian systems, Communication in Theoretical Physics, 2008,50(5): 1041-1046
  16.Fu Jing-Li, Chen Ben-Yong and Xie Feng-Ping, Noether symmetries of discrete mechanico-electrical systems, Chinese Physics B, 2008,17(12): 4354-4360
  17.Fu Jing-Li, Xu Shu-Shan and Weng Yu-Quan, A field method for integrating the equations of motion of mechanico-electrical coupling dynamical systems, Chinese Physics B, 2008, 17(6):1939-1945
  18.Fu Jing-Li, Zhao Wei-Jia and Weng Yu-Quan, Structure properties and Noether symmetries for super-long elastic slender rod, Chinese Physics B, 2008,17(7):2361-2365
  19.Fu Jing-Li, Dai Gui-Dong, Salvador Jimsenez and Tang Yi-Fa, Discrete variational principle and first integrals for Lagrange--Maxwell mechanico-electrical systems, Chinese Physics, 2007,16: 570-577
  20.Zhao Wei-Jia, Weng Yu-Quan and Fu Jing-Li(通訊作者),Lie symmetries and the conserved quantities for super-long elastic slender rod, Chinese Physics Letters, 2007,24 (10): 2773-2776
  21.Fu Jing-Li, Chen Li-Qun, Chen Xiang-Wei, Momentum-dependent symmetries and non-Noether conserved quantities for nonholonomic nonconservative Hamilton canonical systems Chinese Physics, 2006, 15(1): 8-12
  22.Fu Jing-Li, Chen Li-Qun, Salnalor Jiménez and Tang Yi-Fa, Non-Noether symmetries and Lutzky conserved quantities for mechanico-electrical systems, Physics Letters A 2006, 358(1) : 5-10
  23.Liu Cui-Mei, Wu Run-Heng and Fu Jing-Li(通訊作者), Lie symmetries algebra of one-dimensional nonconservative dynamical systems, Chinese Physics, 2007,16(9):2665-2670
  24.Zheng Shi-Wang, Tang Yi-Fa and Fu Jing-Li(通訊作者), Non-Noether symmetries and Lutzky conserved quantities for nonholonimic neoconservative dynamical systems, Chinese Physics,2006, 15(2),243-248
  25.Liu Hong-Ji, Fu Jing-Li(通訊作者) and Tang Yi-Fa, Algebraic structure and Poisson’s theory of mechanico-electrical systems, Chinese Physics, 2006, 15(8),1653-1661
  26.Fu Jing-Li, Chen Li-Qun and Bai Jing-Hua, Localized Lie symmetries and conserved quantities for the finite-degree-of-freedom systems, Chinese Physics, 2005, 14, 6-11
  27.Fu Jing-Li, Li-Qun Chen, Non-Noether symmetries and conserved quantities ofnonconser-vative dynamical shstems, Physics Letter A, 2003, 317 (3-4), 255-259
  28.Fu Jing-Li, Li-Qun Chen, Form invariance, Noether symmetry and Lie symmetry of Hamilton systems, Mechanics Research Communication 2004 31(1) 9-19
  29.Fu Jing-Li, Li-Qun Chen, Perturbation of Symmetries of Rotational Relativistic Birkhoffian Systems and Its Inverse Problems, Physics Letters A 2004,324 (2/3)95-103
  30.Fu Jing-Li,Chen Li-Qun,On Noether symmetries and form invariance of mechanico-electrical systems Physics Letters A 2004,331,138-152
  31.Fu Jing-Li, Li-Qun Chen.Lie symmetries and non-Noether symmetries of Hamilton canonical systems, Chin.Phys.2004,13,1611-1614
  32.Fu Jing-Li, Li-Qun Chen.Non Noether symmetries and conserved quantities of Lagrange mechanico-electrical systems, Chin.Phys.2004, 13, 1784-1789
  33.Fu Jing-Li, Chen Li-Qun, Luo-Yi, Luo Shao-Kai, Stabikity of the equilibrium manifold of the relativistic Birkhoffian systems, Chinese Physics, 2003,12 (4),351-356
  34.Fu Jing-Li, Chen Li-Qun, Bai Jing-Hua, Yang Xiao-Dong, Lie symmetries and conserved quantities of the controllable non-holonomic systems, Chinese physics, 2003,12 (7), 695-699
  35.Fu Jing-Li, Li-Qun Chen,Velocity-dependent symmetries and conserved quantities of nonholonomic dynamical systems, Chinese Physics 2004, 13 (3) 287-291
  36.Jing-Li Fu, Li-Qun Chen,F(xiàn)eng-Ping Xie, Form invariance, Noether symmetries and Lie symmetries of nonconservative dynamical systems, Journal of Shanghai university, 2004,6(3),252-257(EI04488688944)
  37.Fu Jing-Li, Li-Qun Chen and Xiang-Wei Chen, Momentum-dependent symmetries and non-Noether conserved quantities for nonconservative Hamilton systems, Multidiscipline Modeling in Mat and Str, 2006,2(2),213-220
  38.Ke Xian-Xin, Gong Zhen-Bang and Fu Jing-Li, Lie symmetries and conserved quantities of a biped robot, Acta Mechanica Sinica Solida, 2004,17(2),183-188
  39.Fu Jing-Li, Dai Gui-Dong, Salvaolor Jimenes and Tang Yi-Fa, Discrete variational principle and first integrals for Lagrange--Maxwell mechanico-electrical systems, Chinese Physics,2007,16(3),570-577
  40.Liu Hong-Ji, Fu Jing-Li(通訊作者) and Tang Yi-Fa, A series of non-Noether conservative quantities and Mei symmetries of nonconservative systems,Chinese Physics,2007,16(3):599-604
 41.Zheng Shi-Wang Fu Jing-Li(通訊作者), Shi Shen-Yang, Chen Li-Qun  Chen Xiang-Wei Generalized geometry theory on constrained rotating relativistic Birkhoffian systems,Journal of Shanghai University,   2007,11(2): 115-120
  42.Jing-Li Fu, Hao Fu, Ning-Fen Su, and Guo-Liang Bai.Damped properties and Noether symmetries of damped free vibration, Pract.Periodical on Struct.Des.a(chǎn)nd Constr.2010, 15, (1):.50-53
  43.Jing-Li Fu, Hao Fu, Rong-Wan Liu, Hojman conserved quantities of discrete mechanico– electrical systems constructed by continuous symmetries.Physics Letters A 2010, 374 (2010) 1812–1818(SCI 583SS)
  44.Zhao Li, Fu Jing-Li, and Chen Ben-Yong, Lie symmetries and conserved quantities for a two-dimentional nonlinear diffusion equation of concentration, Chin.Phys.B 2010 , 19 (1) : 010301- 010301-5
  45.He Yu-Fang, Fu Jing-Li and Li Xiao-Wei.The symmetries of wave equations on new lattices, Chin.Phys.B 2010 , 19 (6):080301-6 EI: 20102513017629
  46.Fu JingLi, Li XiaoWei, Li ChaoRong, Zhao WeiJia& Chen BenYong, Symmetries and exact solutions of discrete nonconservative systems, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1699–1706
  47.Fu Jing-Li, Chen, Li-Qun ,Chen Ben-Yong.Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1687–1698
  48.Luo Yi-Ping, and Fu Jing-Li, Conformal invariance and conserved quantities of Appell systems under second-class Mei symmetry, Chin.Phys.B, 2010,19(9): 090304-090304-6
  49. Luo Yi-Ping, and Fu Jing-Li, Conformal invariance and Hojman conserved quantities for holonomic systems with quasi-coordinates, Chin.Phys.B, 2010,19(9): 090303-090303-6
  50.zhou Sha,Fu Jing-Li and Liu Yong-Song, Lagrange equations of nonholonomic systems with feactional derivatives, Chin.Phys.B, 2010.19(12):120301-5
  51.He Yu-Fang, Liu Yong-Song and Fu Jing-Li, Reductions and conserved quantities for discrete compound KdV-Burgers equations, Chin.Phys.B, 2011.20(1):010202-7
  52.Shi Shen-Yang and Fu Jing-Li, Lie symmetry and Mei conservation law of continuum system, Chin.Phys.B, 2011.20(1):021101-5
  53.Luo Yi-Ping and Fu Jing-Li, Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry, Chin.Phys.B, 2011.20(1):021102-5
  54.Li C.R., Lu N.P, Xua Q., Mei J, Dong W J, Fu J.L., Cao Z.X., Decahedral and icosahedral twin crystals of silver: Formation and morphology evolution, Journal of Crystal Growth, 2011, 319: 88–95
  55.施沈陽, 傅景禮,陳立群, 離散Ladrange系統(tǒng)的Lie對稱性,物理學(xué)報(bào),2007,56(6)3060-3063(SCI)
  56..鄭世望,傅景禮(通訊作者),李顯輝,機(jī)電系統(tǒng)的動(dòng)量依賴對稱性和非Noether守恒量,物理學(xué)報(bào),2005,54(12)5511-5516
  57.傅景禮, 王新民,相對論Birkhoff系統(tǒng)的Lie對稱性和守恒量,物理學(xué)報(bào),2000, (6),1023-1028
  58.傅景禮, 陳立群,羅紹凱,陳向煒,相對論Birkhoff系統(tǒng)動(dòng)力學(xué)研究,物理學(xué)報(bào),2001, (12) ,2289-2295
  59.傅景禮, 陳立群,薛紜,羅紹凱,相對論Birkhoff系統(tǒng)的平衡穩(wěn)定性,物理學(xué)報(bào), 2002,51(12) , 2683-2689
  60.傅景禮,陳立群,薛紜,轉(zhuǎn)動(dòng)相對論Birkhoff系統(tǒng)的平衡穩(wěn)定性,物理學(xué)報(bào) 2003, 52(2), 256-260
  61.傅景禮,陳立群,約束Birkhoff系統(tǒng)的幾何理論,力學(xué)學(xué)報(bào),2002,(11)(ZK)
  62.傅景禮,陳立群,謝鳳萍,相對論Birkhoff系統(tǒng)的對稱性攝動(dòng)和絕熱不變量。物理學(xué)報(bào), 2003,52(11)2664-2670。

  *如果發(fā)現(xiàn)導(dǎo)師信息存在錯(cuò)誤或者偏差,歡迎隨時(shí)與我們聯(lián)系,以便進(jìn)行更新完善。

以上老師的信息來源于學(xué)校網(wǎng)站,如有更新或錯(cuò)誤,請聯(lián)系我們進(jìn)行更新或刪除,聯(lián)系方式

添加浙江理工大學(xué)學(xué)姐微信,或微信搜索公眾號(hào)“考研派小站”,關(guān)注[考研派小站]微信公眾號(hào),在考研派小站微信號(hào)輸入[浙江理工大學(xué)考研分?jǐn)?shù)線、浙江理工大學(xué)報(bào)錄比、浙江理工大學(xué)考研群、浙江理工大學(xué)學(xué)姐微信、浙江理工大學(xué)考研真題、浙江理工大學(xué)專業(yè)目錄、浙江理工大學(xué)排名、浙江理工大學(xué)保研、浙江理工大學(xué)公眾號(hào)、浙江理工大學(xué)研究生招生)]即可在手機(jī)上查看相對應(yīng)浙江理工大學(xué)考研信息或資源。

浙江理工大學(xué)考研公眾號(hào) 考研派小站公眾號(hào)
浙江理工大學(xué)

本文來源:http://m.zgxindalu.cn/zhejiangligongdaxue/yanjiushengdaoshi_512793.html

推薦閱讀